L’Indicizzazione Semantica Latente (LSI, dall’inglese Latent Semantic Indexing) è una tecnica utilizzata nell’ambito dell’elaborazione del linguaggio naturale e dell’information retrieval (recupero delle informazioni) per migliorare la precisione nelle ricerche basate su parole chiave e per comprendere meglio il contesto semantico dei documenti.
LSI utilizza una tecnica di analisi statistica e matematica per scoprire le relazioni semantiche tra le parole nei documenti testuali.
Piuttosto che basarsi esclusivamente su corrispondenze esatte di parole chiave tra le query degli utenti e i documenti indicizzati, LSI cerca di identificare le relazioni concettuali tra parole simili o correlate.
Ecco come funziona in breve:
Inizialmente, viene creata una matrice termine-documento che rappresenta la frequenza delle parole chiave nei documenti.
Ogni riga della matrice rappresenta una parola chiave, e ogni colonna rappresenta un documento.
Questa matrice è spesso chiamata “spazio termine-documento”.
La matrice termine-documento viene scomposta utilizzando la decomposizione a valore singolo (SVD), una tecnica matematica che scompone la matrice in tre matrici più piccole: due matrici ortogonali e una matrice diagonale che contiene i valori singolari.
La dimensionalità della matrice SVD viene ridotta, preservando solo i primi valori singolari più rilevanti.
Questo aiuta a eliminare il rumore e a catturare le informazioni semantiche più importanti.
LSI determina le relazioni semantiche tra parole e documenti attraverso i vettori di dimensioni ridotte generati dalla riduzione dimensionale della matrice SVD.
Ciò consente di identificare parole simili o correlate, anche se non corrispondono esattamente alle parole chiave della query dell’utente.
Utilizzando queste relazioni semantiche, LSI è in grado di restituire documenti rilevanti anche se non contengono esattamente le stesse parole chiave della query.
Questo contribuisce a migliorare la precisione del recupero delle informazioni.
LSI è stato ampiamente utilizzato nelle tecnologie di ricerca e nelle applicazioni di elaborazione del linguaggio naturale, ma è stato in parte superato da approcci più avanzati basati sul deep learning, come il Word2Vec e il BERT, che offrono risultati ancora migliori nella comprensione del contesto semantico dei testi.
Tuttavia, LSI continua a essere una tecnica di riferimento nella storia dell’information retrieval e dell’analisi del testo.
Te la invieremo periodicamente per comunicazioni importanti e news sul mondo digitale. Potrai disiscriverti in ogni momento cliccando l'apposito link in calce alla newsletter.
https://youtu.be/Dfmo97-BEAQ La Search Intent, o "intento di ricerca," è uno degli aspetti più importanti da…
https://youtube.com/shorts/ctyz5TLqRhY?feature=share La long tail è una strategia SEO efficace per ottenere un traffico qualificato e…
Il panorama digitale si sta evolvendo rapidamente e i video stanno diventando una parte cruciale…
I digital twins rappresentano una delle tecnologie più rivoluzionarie dell'Industria 4.0, consentendo di creare una rappresentazione virtuale di…
https://www.youtube.com/shorts/MqnpGDRkDRM La SEO programmatica rappresenta un’opportunità interessante per chi vuole scalare la produzione di pagine web ottimizzate e…
Google svela 3 Consigli chiave per risolvere problemi tecnici Nell'ambito sempre evolutivo dell'ottimizzazione SEO, Google…